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Wave-induced distortions of a slightly stratified shear 
flow: a nonlinear critical-layer effect 

By RICHARD HABERMAN 
Institute of Geophysics and Planetary Physics, University o f  California, La, Jollat 

(Received 3 July 1972 and in revised form 6 November 1972) 

A slightly stratified shear flow is considered when the effects of nonlinearity, 
viscosity and thermal diffusivity are in balance in the critical layer. Finite 
amplitude essentially non-diffusive neutral waves exist only if the mean tem- 
perature, velocity and vorticity profiles are distorted such that small jumps 
in these quantities occur across the critical layer. 

1. Introduction 
It is well known that critical layers, regions near which the wave velocity 

equals the mean flow velocity, are of utmost importance in the study of homo- 
geneous and stratified shear flows, when the Reynolds number of the flow is 
large. In  this paper, the critical layer for a slightly stratified shear flow is investi- 
gated for the case in which the effects of viscosity, thermal diffusivity and non- 
linearity are in balance. 

It is only in the critical layer (and near external boundaries) that the inviscid 
linearized disturbance equation is not valid. For homogeneous shear flows this 
singularity was first analysed by incorporating viscous effects in the neighbour- 
hood of the singular point. Lin’s (1945, 1955) careful asymptotic analysis for 
large Reynolds numbers of the Orr-Sommerfeld equation (the linearized viscous 
disturbance equation) results in a logarithmic phase shift of - 7~ (if it is assumed 
that the critical layer is asymptotically distinct from the boundary layer at  
any wall). In  a similar manner, the stratified problem was studied by Miles 
(1961, 1963) and Booker & Bretherton (1967). The jumps in wave properties 
across the critical layer show that waves are damped in the stratified case upon 
travelling through the critical layer if the Richardson number is greater 
than $. 

More recently, Benney & Bergeron (1969) and, independently, Davis (1969) 
developed a theory for homogeneous shear flows in which nonlinear effects 
rather than viscous effects remedied the singularity in the linearized inviscid 
disturbance equation. The logarithmic phase shift across the critical layer 
vanished. On this basis, Benney & Bergeron (1969) calculated new neutral 
waves. In  order to relate these new solutions to those previously obtained, Haber- 
man (1972) permitted viscous and nonlinear effects to be important in the 
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critical layer. In  particular, the logarithmic phase shift varied monotonically 
between its viscous and nonlinear values depending only on a local Reynolds 
number in the critical layer. A small jump across the critical layer in mean vor- 
ticity is induced by the finite amplitude neutrally stable wave. Although it 
vanishes in the limit in which viscous effects are dominant in the critical layer, 
the jump in mean vorticity persists when nonlinear effects dominate. Here it 
will be shown that slight stratification causes the finite amplitude wave to 
induce not only a distortion of the mean vorticity, but also one in mean velocity 
and mean temperature. 

Kelly & Maslowe (1970) extended to stratified shear flows the nonlinear 
critical-layer analysis developed for non-stratified flows by Benney & Bergeron 
(1969). The stronger singularity in the stratified problem results in the dynamics 
ofthe critical layer being governed by an analytically difficult coupled set of non- 
linear partial differential equations. Consequently, Kelly & Maslowe (1970) 
considered the more tractable slightly stratified problem, which nonetheless 
incorporates the first non-trivial influence of the stratification. Only the case in 
which nonlinear effects are dominant in the critical layer was discussed. As in the 
homogeneous case, the logarithmic phase shift of the disturbances across the 
critical layer vanished. More recently, the more difficult problem in which the 
stratification is no longer small has been considered numerically by Maslowe 
(1972). 

2. Formulation 
The method of matched asymptotic expansions is employed to determine the 

dynamics of the critical layer. Using the Boussinesq approximation, Kelly & 
Maslowe (1970) derived the equations of motion for neutrally stable, finite 
amplitude, two-dimensional, periodic disturbances to a slightly stratified shear 
flow when the nonlinear effects are dominant in the critical layer. Here, two 
modifications to the work of Kelly & Maslowe (1970) are made. (i) The effects 
of viscosity, thermal diffusivity and nonlinearity are in balance in the critical 
layer. (ii) Possible small distortions of the mean profiles are taken into account, 
as was shown to be necessary in the non-stratified case by Haberman (1972). 
The notation below is that used for nonlinear critical layers by Benney & 
Bergeron (1969), Kelly & Maslowe (1970), Maslowe (1972) and Haberman 
(1972). 

For flows with small Richardson numbers J ,  = &$ corresponding to a weak 
stratification, the leading-order streamlines in the critical layer are in the pattern 
of ‘cat’s eyes’. 

u;(+Y2+ cost) = constant, 

where ,$ = a(x - c t )  and y - yc = €4 Y ,  meaning that the thickness of the critical 
layer is O(s4). For direct comparison with Kelly & Maslowe (1970), th’ is corre- 
sponds to an amplitude normalization of the Frobenius solutions of the linearized 
inviscid equation such that B = 1, while for comparison with Haberman (1972) 
B= u:. 
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The weakly coupled linear partial differential equations that determine the 
important relationships across the critical layer are 

Y$.*yyg+sinE$$,, + ( u ; m )  T,* = hl@:YYY, (2.1) 

YTZ+sinET$ = A2T$,. (2.2) 
A, is an inverse local Reynolds number in the critical layer, A, = l/aRdu;. 
A, is that same quantity scaled by the Prandtl number, A, = A,/Pr. The terms 
containing A, and A, represent respectively the viscous and heat-diffusion effects, 
which are assumed to be in balance in the critical layer with the effects of non- 
linearity. This implies that both A, and A, are of O( I), in contrast to the problem 
solved by Kelly & Maslowe (1970), in which both A, and A, are assumed small. 
T* is the 0(&) temperature in the critical layer. $* is the O ( d )  stream function 
in the critical layer. Equation (2.1) and (2.2) are to be solved with the asymptotic 
conditions as Y -t 00 obtained by the method of matched asymptotic expan- 
sions : 

$* N Qu:Y3+HZY2+u:YlogIYI cos[+L$Y+ Y(A$cos~+C:sin[) 

+u;j ,cos[logIYi$B~~cosE+D~*sinE+.. .  as Y - t  *co, (2.3) 

The terms & 4 Y 3  and TLY are obtained directly from the Taylor series around 
the critical point respectively of the meantstream function and the mean tem- 
perature. The terms u: Y log I Y 1 cos E, uEJclog I Y I cos 6 and (TI./ Y) cos E result 
from the more singular of the two Frobenius solutions of the linearized inviscid 
and non-diffusive disturbance equation, defined by Kelly & Maslowe (1970) in 
the case of a small Richardson number. The less singular of the two Frobenius 
solutions yields the term Y(A$cosE+C:sin[), where A: and C: are as yet 
unknown coefficients. In  order to solve the eigenvalue problem and hence deter- 
mine neutral modes, it is necessary to calculate the jump relationships across the 
critical layer: A t  - A- and C: - CT . The terms H z  Y2 and B& cos 5 + sin 6,  
which represent respectively an O ( d )  jump in mean vorticity and an O ( d )  jump 
in the amplitude of the fundamental wave disturbance, are necessary as Haber- 
man (1972) showed. These terms did not appear in either Benney & Bergeron 
(1969) or Kelly & Maslowe (1970), indicating that their solutions can not be 
obtained continuously from the diffusive problem by taking a non-diffusive limit. 
New to this work are N z  and LZY, which will be shown to be necesssarily in- 
duced by a finite amplitude wave disturbance interacting with a slightly strati- 
fied shear flow. N: represents a possible O(&) jump in mean temperature across 
the critical layer. Lz Y represents a possible O(s) jump in mean velocity across 
the critical layer (the possibility of an O ( d )  jump in mean velocity has been 
eliminated by Haberman (1972)). 

T" - TLY+N:+(TL/Y)cosg+ ... as Y - t  +a. (2.4) 

3. Distortions of the mean profiles 
Relationships between quantities above and below the critical layers are 

derived. In  particular, it is shown that there must be an O ( d )  jump in mean tem- 
perature and an O ( E )  jumpin mean velocity across the critical layer. These distort 
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FIGURE 1. The logarithmic phase shift for a homogeneous shear flow. 

the original mean profiles from that which presumably existed without the pre- 
sence of the finite amplitude neutrally stable wave. 

Certain results of the investigation by Haberman (1972) of critical layers for a 
homogeneous shear flow are quite conveniently applicable directly to the 
stratified problem. In  particular, the solution $(& Y ;  A,) of the following im- 
portant problem was discussed : 

Y@YY[+sin@tbYY = hc$FYYY, (3.1) 

with asymptotic conditions as Y -+ k 00 

l/r N QY3+H+Y2+ Ylog1YI cosE+A,YcosE+C,YsinE 

+B3,cost+Dgksint+ ... . (3.2) 

On the basis of Reynolds stress relationships, some of the jump conditions were 
derived analytically, 

(3 .3a,  b)  

(3.3c) 

Dg+ - D4- = 0 ,  B++ - B+ = - 2(H+ - H-), 

C+ - C- = 4Ac( H+ - H-), 

while the others were derived numerically, 

A + -A-  = 0 ,  c+-c- = #(A,). ( 3 . 3 4  e )  

$(Ac) is the logarithmic phase shift for the homogeneous shear problem, whose 
dependence on the inverse local Reynolds number A, is reproduced in figure 1 
from Haberman (1 972). Thus, 

H+ - H .  = (b(hc)/4hc. (3-4) 
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The O(d)  temperature for the stratified shear problem corresponds to the 

(3.5) 

O(d)  vorticity for the homogeneous one, since 

ll* = K$yp& y ;  4) 
solves (2.2) and the asymptotic conditions (2.4) are satisfied if 

Thus the O ( E )  finite amplitude neutrally stable wave has induced an O(d) jump 
in mean temperature across the critical layer. This jump will persist in the limit 
in which nonlinear effects are dominant in the critical layer (A, --f 0 ) ,  since, as 
was discussed by Haberman (1972), figure I implies that the phase shift tends to 
zero such that #(A2)/A2 is bounded as A, --f 0. hrthermore as A, -+ 0 the tempera- 
ture will be continuous across the edges of the cat’s eyes (and constant inside the 
cat’s eyes), but the temperature gradient will be discontinuous, necessitating a 
thinner boundary layer on the edges of the cat’s eyes. This conclusion follows 
from (3.5), since in the non-stratified caseHaberman (1972) showed that the vor- 
ticity +y is continuous across the edges (and constant inside), but by implica- 
tion the derivative of the vorticity $F y p  is discontinuous. On the other hand as 
A, + a, q5(A,)/A,+ 0. Thus this jump in mean temperature can be neglected if 
the amplitude of the disturbance is sufficiently small so that the linear diffusive 
critical-layer theory is appropriate. 

The local Richardson number in the critical layer, to leading order in an expan- 
sion in powers of 6, is given by 

where is the local Richardson number in the critical layer based on the un- 
disturbed velocity and temperature profiles (without the effects of a finite ampli- 
tude wave). It does not depend on the stream function $*; only the derivative 
of the temperature is important. However, (2.4) shows that, far away from the 
critical layer, the Richardson number essentiallyremains at its undisturbed value, 
and is not influenced by the wave-induced distortions. In  the critical layer values 
of $ y p  y, the derivative of the vorticity in the homogeneous case, are needed. 
When (3.5) is taken into account, examination of the contours of constant vor- 
ticity obtained by Haberman (1971) shows the qualitative variation with posi- 
tion and A, of the local Richardson number. For A, not large, the local Richardson 
number is noticeably smaller in the interior of the cat’s eyes. This is expected for 
small A,, since in that limit the temperature is known to be uniform inside the cat’s 
eyes. However, away from the interior of the cat’s eyes, the derivative of vorticity 
in the homogeneous case is such that the largest local Richardson number is 
increased over its undisturbed value. The largest value occurs near the edge of 
the cat’s eyes. For A, = 0.3, the maximum local Richardson number has increased 
by approximately 40 %; for A, = 1.0, the maximum local Richardson number has 
increased by approximately 20 % ; while for A, = 10.0, there is no noticeable 
increase. Better quantitative expressions for this increase require more accurate 
values of $ p y y  than those obtained by Haberman (1971). However, for A, -+ 0 
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the derivative of vorticity, to leading order in a A, expansion, can be obtained 
analytically : 

244 YI 

+-ypp = su”” (SY2 + cos E.- cosX)4 dX’ 

outside the eat’s eyes (it is zero inside the eat’s eyes). The maximum value given 
by this formula can be shown to occur along the edge of the cat’s eyes in the 
middle (specifically, at  E = n-, I Y I = 2). This results in the maximum value of t$e 
local Richardson number occurring at  this point and having the value &r&J,, 
or roughly 57 % more than its undisturbed value. Thus one effect of nonlinearity 
in the critical layer is to increase the maximum value of the local Richardson 
number. 

To obtain the other jump conditions across the critical layer, the equation for 
the stream function +* must be solved. Determination of the temperature T* 
yields 

y ~ ~ y S + S i n S ~ $ y p + U ~ j , + p y E  = hl+TrYPP7 (3.7) 

where + = +(E, Y ;  A2). Quantities above and below the critical layer are now 
shown to be related. The technique to do this, employed by Haberman (1972) 
in the homogeneous case, involves obtaining integrals of (3.7). 

Integrating with respect to Y yields 

a a a A  
a t  - ( Y$5 - +*) + ay (sin t $5) + ( 4 4 W  = hl+& + Il(t). (3.8) 

Since Il(t) is independent of Y ,  it can be determined by evaluating (3.8) asymp- 
totically as Y -+ 2 co, using (2.3) and (3.2): 

- 2u;zsin E+ B& sin 6- D& cos <+ 2 H z  sin E + ui$( - A ,  sin [ + C, cos c )  
= u;Al+Il(g). (3.9) 

By subtracting the two equations (3.9), it follows that 

Di+-og-  = uL$.$(A~), f$+-B$- = -2(HT-H?), (3 .10a7b)  

where equations (3.3) have been used. In  the limit J, = 0, these agree with the 
results Haberman (1972) derived in the homogeneous case. Since +* is periodic 
in 5 with period 2n, by integrating (3.8) over that period and over Y ,  the follow- 
ing is derived : 

A 

(3.11) 

where (3.9) has been used to evaluate 

jO2= Il(x) dx. 

I2 is a constant, which is again determined by the asymptotic evaluation as 
Y --f 1 cc of an equation. Hence (3.11) implies that 

d 7 f  = 4nh1 H$ +I2 .  (3 .12)  
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The jump in mean vorticity is thus proportional to the logarithmic phase shift: 

0: - c’” = 4h,(HT - H t ) ,  (3.13) 

as was shown in the non-stratified case by Benney & Bergeron (1969) and 
Haberman (1972). One further integration of (3.11) with respect to Y and 
another asymptotic evaluation as Y --f f 00 shows that 

q+ - Dg- = 2A1(L7 - Li). (3.14) 

Consequently ( 3 . 1 0 ~ )  and (3.14) imply the existence of an O(E) jump in mean 
velocity across the critical layer 

L: - L? = u;j,4”(h2)/2hl. (3.15) 

In  order to maintain a nonlinear neutrally stable periodic wave disturbance to 
slightly stratified shear flow, the velocity profile must be distorted in the manner 
indicated by (3.15). As with the temperature profile, (3.15) shows that the dis- 
tortions of the velocity profile vanish in the linear viscous and diffusive theory. 
The situation in which A, < 1 and A, < A, has an unusual property. This is the 
case in which the nonlinear effects are dominant in the momentum equation in 
the critical layer and the Prandtl number is small (it is not necessary that A, < 1). 
Under these circumstances (3.15) implies that the O ( E )  jump in mean velocity 
can be quite large. The possible consequences of this will not be pursued further 
here. 

In  summary, it has been shown that jumps exist across the critical layer in 
mean temperature and velocity. However, the logarithmic phase shift, so 
important for any eigenvalue calculation of neutral modes, has not as yet been 
determined. To do this would require the numerical integration of (2.1) and 
(2.2) with asymptotic conditions given by (2.3) and (.2.4), as was done for the 
analogous problem for homogeneous shear flows by Haberman (1971, 1972). 
This calculation will not be performed at  this time. 

4. Prandtl number equal to one 
In  the special case in which the Prandtl number is approximately equal to one, 

such that A, = A, = A, the remaining unknown jump conditions can be obtained 
analytically. Equation (3.7), 

has a particular solution 

where $ = $([, Y; A) .  This result follows from differentiation with respect to Y 
of (3.1). A more general solution to (4.1) is obtained by superimposing multiples 
of known homogeneous solutions. Thus 

4jc $ T 9 

$* = UEjc~rp+KO$+K1Y2+K2(t) Y + K 3 ( 0 >  (4.2) 

where $ is given by (3.1)-(3.3). Fortunately, the Ki can be chosen such that not 
only is (4.2) a solution to (4.1), but it also satisfies the asymptotic conditions (2.3). 



7 34 R. Haberman 

In  order for (4.2) to have the necessarymean shear &u;Ys, it follows that KO = u:. 
Now all the jump relationships are determined by comparing the known asymp- 
totic conditions of $([, Y ;  A )  given by (3.2) and (3.3) with the partially unknown 
asymptotic conditions of @* given by (2.3). In  this manner, the following can be 
derived : 

L: - L* = u,&5(h)/2A, Dz+ - Dg- = u&5(h), (4.3a, b)  

Bi+ - Bg- = - U: +(A)/2h, AT - AT = 0, 

C$ - G? = u:$((h), H: - HT = u," $(h)/4h. 

(4.3c,d) 

(4.3 e,$) 

These jump conditions along with (3.6) completely relate the solution above the 
critical layer to that below the critical layer. Equation (4.3a), for the O(s)  
distortion of the mean velocity, and (4.3b) agree respectively with (3.10a) and 
(3.15) in the case Pr = 1. Furthermore (4.3c), (4.3e) and (4.3f) are consistent 
with the incomplete jump conditions (3.10b) and (3.13). It is noted that con- 
ditions (4 .34 ,  (4.3e) and (4.3f) are identicalto those obtainedin thenon-stratified 
case by Haberman (1972). In  particular, the logarithmic phase shift is again 
determined directIy from figure 1. The concept of a logarithmic phase shift is 
quite helpfulsince besides ( 4 . 3 4  and (4.3e), (4.3 b) issimplyderivedifthecomplex 
logarithmic function appearing in the Frobeniusl solutions of the linearized 
inviscid and non-diffusive equation are interpreted in the following manner: 

above the critical layer, 

log Iy - ye] +$(A) below the critical layer. 

In  the case in which u: = 0, H: = H,T for example, and (4.2) satisfies the match- 
ing condition (2.3) if K ,  = HT - &:&. 

Again in the limit in which nonlinear effects dominate in the critical layer 
(A  -+ 0 ) ,  the analysis for $- in this limit previously performed by Haberman 
(1972) shows that (4.2) implies that the velocity is continuous, but that the 
vorticity is discontinuous at the edge of the cat's eyes (although a non-vanishing 
constant inside). Thus not only is a thin boundary layer a t  the edge of the cat's 
eyes necessary to smooth the discontinuous temperature gradient, but also to 
smooth the discontinuous vorticity. Furthermore for h -+ 0, in the case in which 
u: = 0 ,  equation (4.2) implies that the velocity is constant inside the cat's eyes. 

5. Discussion 
After the jump conditions across the critical layer have been determined, the 

eigenvalue'calculation for neutrally stable waves must still be carried out. How- 
ever, even after that calculation, the difficult question remains of determining 
the time-dependent mechanism for the generation of these finite amplitude 
modes. Solving this requires an understanding of the nonlinear initial-value 
problem. 

The analysis in this paper applies to the relatively simple case in which the 
Richardson number a t  the critical level is small. Then small distortions of the 
mean temperature, velocity and vorticity are necessary for the existence of a 
neutrally stable finite amplitude wave disturbance. This suggests that the 
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problem of greater interest, studied by Maslowe (1972), when the Richardson 
number is no longer small (but nonlinear effects dominate), might need to be 
modified by also allowing jumps in the mean profiles. This would probably 
influence the dynamics of the critical layer. 
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